QUESTION 2005

1. Find
$$\frac{dy}{dx}$$
 when $y = x^x$.

See Topic: SUCCESSIVE DIFFERENTIATION, Short Answer Type Question No. 1.

2. If
$$A = \begin{bmatrix} -1 & 2 & 6 \\ 4 & 5 & -4 \\ -2 & 0 & 1 \end{bmatrix}$$
 and $A^T + 2B = 3I_3$, then find B, where I_3 denotes identity matrix of

order 3.

See Topic: MATRICES, Short Answer Type Question No. 2.

3. Show that the mapping $f(x) = \cos x$ is neither one-to-one nor onto where $f: R \to R$. See Topic: SET THEORY, Short Answer Type Question No. 1.

4. If
$$y = \cos(m \sin^{-1} x)$$
, then prove that $(1-x^2)y_2 + m^2y = xy_1$.
See Topic: SUCCESSIVE DIFFERENTIATION, Short Answer Type Question No. 3.

5. If $f:z\to z$ is defined by $f(x)=x^2$ and $g:z\to z$ is defined by g(y)=2y, then find $(f\circ g)(-2)$ and $(f\circ g)(2)$, where z= set of all integers.

See Topic: SET THEORY, Short Answer Type Question No. 2.

6. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 3 & 3 \end{bmatrix}$, find AB.

See Topic: MATRICES, Short Answer Type Question No. 3.

7. If $A = \{x \in z : 0 \le x \le 10\}$, $B = \{x \in z : 5 \le x \le 15\}$ & $C = \{x \in z : x > 5\}$; then find A – B and $(B \cap C)$ – A, where z = set of all integers. See Topic: SET THEORY, Short Answer Type Question No. 3.

Scanned by CamScanner

8. Integrate:
$$\int xe^x dx$$
.

See Topic: INDEFINITE INTEGRATIONS, Short Answer Type Question No. 1.

9. The co-ordinates of the point P(2, 3) change to (3, -1) due to shifting of origin. Find the position of the new origin.

See Topic: TRANSFORMATION OF CO-ORDINATES, Short Answer Type Question No. 1.

10. Evaluate:
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
.

See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 1.

11. Evaluate:
$$\lim_{x\to 0} (\sin 3x / \sin 4x)$$
.

See Topic: FUNCTION OF SEVERAL VARIABLES, Short Answer Type Question No. 1.

12. Solve the equation $x^3 - 7x^2 + 36 = 0$, given that one of its roots is double of another. See Topic: POLYNOMIAL, Short Answer Type Question No. 2.

13. Evaluate
$$\lim_{x\to a} \frac{1-\cos(x-a)}{(x-a)^2}$$

See Topic: FUNCTION OF SEVERAL VARIABLES, Short Answer Type Question No. 2.

14. Evaluate
$$\lim_{x\to 0} \frac{x \log \sqrt{1+x}}{\sin^2 x}$$

See Topic: FUNCTION OF SEVERAL VARIABLES, Short Answer Type Question No. 3.

15. Evaluate
$$\lim_{x\to 0} \frac{\tan 2x - x}{3x - \sin x}$$

See Topic: FUNCTION OF SEVERAL VARIABLES, Short Answer Type Question No. 4.

16. Using Mean Value Theorem of Lagrange, find out the approximate value of $\sqrt{51}$. See Topic: EXPANSION OF FUNCTION, Short Answer Type Question No. 1.

POPULAR PUBLICATIONS

17. A function f is defined by $f(x) = \begin{cases} x-3 & when \ x \le 0 \\ x^2 & when \ x > 0 \end{cases}$. Show continuity of f at x = 0.

See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Short Answer Type Question No. 3.

18. Differentiate $\frac{x^3}{(1+x^3)}$ with respect to x^4 .

See Topic: SUCCESSIVE DIFFERENTIATION, Short Answer Type Question No. 4.

19. Verify that the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

See Topic: MATRICES, Short Answer Type Question No. 4.

20. If
$$u = \tan^{-1} \left(\frac{(x+y)}{(\sqrt{x}+\sqrt{y})} \right)$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$.

See Topic: FUNCTION OF SEVERAL VARIABLES, Long Answer Type Question No. 3.

21. Find the maxima and minima of $x^3 - 6x^2 + 9x - 8$.

See Topic: MISCELLANEOUS, Short Answer Type Question No. 1.

22. Determine whether the function
$$f(x, y) = \frac{xy}{x^2 + y^2}$$
, if $(x, y) \neq (0, 0)$ and $f(x, y) = 0$, if

f(x, y) = (0, 0) is continuous at the origin.

See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Long Answer Type Question No. 4.

23. If α , β , γ are the roots of the equation $x^3 - px^2 + qx - r = 0$; find the equation whose

roots are
$$\frac{1}{\alpha^2 \beta^2}$$
, $\frac{1}{\beta^2 \gamma^2}$ and $\frac{1}{\gamma^2 \alpha^2}$.

See Topic: POLYNOMIAL, Short Answer Type Question No. 3.

24. Show that the equation $x^5 + x^3 - 2x^2 + x - 2 = 0$ has at least two imaginary roots. See Topic: POLYNOMIAL, Short Answer Type Question No. 4.

25. If α , β , γ be the roots of the equation $x^3 + 2x^2 + 3x + 4 = 0$ find the equation whose roots

are
$$1 + \frac{1}{\alpha}$$
, $1 + \frac{1}{\beta} & 1 + \frac{1}{\gamma}$

See Topic: POLYNOMIAL, Short Answer Type Question No. 5.

26. State Lagrange'sfol

27. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then find A^2 and show that $A^2 = A^{-1}$.

See Topic: MATRICES, Long Answer Type Question No. 3.

28. Reduce the It

29. Evaluate:
$$\int \frac{\cos x dx}{(2 + \sin x)(3 + \sin x)}$$

See Topic: INDEFINITE INTEGRATIONS, Short Answer Type Question No. 2.

30. Evaluate
$$\int \tan^{-1} \left(\frac{2x}{1+x^2} \right) dx$$

See Topic: INDEFINITE INTEGRATIONS, Short Answer Type Question No. 3.

31. Evaluate
$$\int \frac{\sin 2x dx}{a\cos^2 x + b\sin^2 x}$$

See Topic: INDEFINITE INTEGRATIONS, Short Answer Type Question No. 4.

32. Show that
$$\int_{0}^{\pi} \frac{x \tan x dx}{\sec x + \tan x} = \frac{\pi}{2} (\pi - 2).$$

See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 2.

33. Solve $x^3 - 9x + 28 = 0$ using Cardan's method.

See Topic: POLYNOMIAL, Short Answer Type Question No. 6.

POPULAR PUBLICATIONS

34. Is the following system of linear equations solvable? If yes, solve it by using Cramer's rule:

$$x + y + z = 7$$
, $x + 2y + 3z = 16$, $x + 3y + 4z = 22$.

See Topic: MATRICES, Long Answer Type Question No. 4.

35. Expand $e^{\sin x}$ by Maclaurin Theorem in an infinite series stating condition of convergence.

See Topic: EXPANSION OF FUNCTION, Short Answer Type Question No. 2.

36. Determine the nature of the conic represented by $\frac{8}{r} = 4 - 5\cos\theta$.

See Topic: POLAR EQUATIONS, Short Answer Type Question No. 1.

37. If by a that a+b=a'+b'.

38. Determine the angle through which the axes must be rotated so that the equation

$$lx + my + n = 0 (m \neq 0)$$
 assumes the form $ay' + b = 0$.

See Topic: TRANSFORMATION OF CO-ORDINATES, Short Answer Type Question No. 2.